首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   348篇
  免费   98篇
  国内免费   10篇
化学   429篇
综合类   1篇
物理学   26篇
  2023年   4篇
  2022年   4篇
  2021年   11篇
  2020年   21篇
  2019年   17篇
  2018年   10篇
  2017年   9篇
  2016年   25篇
  2015年   41篇
  2014年   27篇
  2013年   32篇
  2012年   34篇
  2011年   36篇
  2010年   18篇
  2009年   36篇
  2008年   24篇
  2007年   21篇
  2006年   15篇
  2005年   17篇
  2004年   18篇
  2003年   10篇
  2002年   3篇
  2001年   5篇
  2000年   1篇
  1999年   3篇
  1998年   1篇
  1997年   5篇
  1996年   3篇
  1995年   1篇
  1992年   2篇
  1982年   1篇
  1977年   1篇
排序方式: 共有456条查询结果,搜索用时 31 毫秒
21.
Through the combination of the divergent and convergent approaches, coupled with the utilization of the powerful Sharpless “click‐chemistry” reaction, two series of sulfonyl‐based high‐generation NLO dendrimers were conveniently prepared with high purity and in satisfactory yields. Thanks to the perfect three‐dimensional (3D) spatial isolation from the highly branched structure and the isolation effect of the exterior benzene moieties and the interior triazole rings, these dendrimers exhibited large second harmonic generation coefficient (d33) values up to 181 pm V?1, which, to the best of our knowledge, is the highest value so far for polymers containing sulfonyl‐based chromophore moieties. Meanwhile, compared with the nitro‐chromophore‐based analogues, their optical transparency and NLO stability were improved in a large degree, due to the lower dipole moment (μ) and the special main‐chain structure of sulfonyl‐based chromophore in these dendrimers.  相似文献   
22.
A p‐quinodimethane (p‐QDM)‐bridged porphyrin dimer 1 has been prepared for the first time. An unexpected Michael addition reaction took place when we attempted to synthesize compound 1 by reaction of the cross‐conjugated keto‐linked porphyrin dimers 8 a and 8 b with alkynyl/aryl Grignard reagents. Alternatively, compound 1 could be successfully prepared by intramolecular Friedel–Crafts alkylation of the diol‐linked porphyrin dimer 14 with concomitant oxidation in air. Compound 1 shows intense one‐photon absorption (OPA, λmax=955 nm, ε=45400 M ?1 cm?1) and a large two‐photon absorption (TPA) cross‐section (σ(2)max=2080 GM at 1800 nm) in the near‐infrared (NIR) region due to its extended π‐conjugation and quinoidal character. It also exhibits a short singlet excited‐state lifetime of 25 ps. The cyclic voltammogram of 1 displays multiple redox waves with a small electrochemical energy gap of 0.86 eV. The ground‐state geometry, electronic structure, and optical properties of 1 have been further studied by density functional theory (DFT) calculations and compared with those of the keto‐linked dimer 8 b . This research has revealed that incorporation of a p‐QDM unit into the porphyrin framework had a significant impact on its optical and electronic properties, leading to a novel NIR OPA and TPA chromophore.  相似文献   
23.
Donor–acceptor (D–π–A) systems that combine triarylamine donor blocks and dicyanovinyl (DCV) acceptor groups have been synthesized. Starting from the triphenylamine (TPA)? thiophene? DCV compound ( 1 ) as a reference system, various synthetic approaches have been developed for controlling the light‐harvesting properties and energy levels of the frontier orbitals in this molecule. Thus, the introduction of methoxy groups onto TPA, the replacement of one phenyl ring of TPA by a thiophene ring, or the extension of the π‐conjugating spacer group lead to the modulation of the HOMO level. On the other hand, the fusion of the DCV group onto the vicinal thiophene ring by an ortho‐phenylene bridge allows for a specific fine‐tuning of the LUMO level. The electronic properties of the molecules were analyzed by using UV/Vis spectroscopy and cyclic voltammetry and the compounds were evaluated as donor materials in basic bilayer planar heterojunction solar cells by using C60 as acceptor material. The relationships between the electronic properties of the donors and the performance of the corresponding photovoltaic devices are discussed. Bilayer planar heterojunction solar cells that used reference compound 1 and C70 afforded power‐conversion efficiencies of up to 3.7 %.  相似文献   
24.
New complexes with six ferrocenyl (Fc) groups connected to ZnII or CdII tris(2,2′‐bipyridyl) cores are described. A thorough characterisation of their BPh4? salts includes two single‐crystal X‐ray structures, highly unusual for such species with multiple, extended substituents. Intense, visible d(FeII)→π* metal‐to‐ligand charge‐transfer (MLCT) bands accompany the π→π* intraligand charge‐transfer absorptions in the near UV region. Each complex shows a single, fully reversible FeIII/II wave when probed electrochemically. Molecular quadratic nonlinear optical (NLO) responses are determined by using hyper‐Rayleigh scattering and Stark spectroscopy. The latter gives static first hyperpolarisabilities β0 reaching as high as approximately 10?27 esu and generally increasing with π‐conjugation extension. Z‐scan cubic NLO measurements reveal high two‐photon absorption cross‐sections σ2 of up to 5400 GM in one case. DFT calculations reproduce the π‐conjugation dependence of β0, and TD‐DFT predicts three transitions close in energy contributing to the MLCT bands. The lowest energy transition has octupolar character, whereas the other two are degenerate and dipolar in nature.  相似文献   
25.
Carbon dots (CDs) and their derivatives are useful platforms for studying electron-donor/acceptor interactions and dynamics therein. Herein, we couple amorphous CDs with phthalocyanines (Pcs) that act as electron donors with a large extended π-surface and intense absorption across the visible range of the solar spectrum. Investigations of the intercomponent interactions by means of steady-state and pump-probe transient absorption spectroscopy reveal symmetry-breaking charge transfer/separation and recombination dynamics within pairs of phthalocyanines. The CDs facilitate the electronic interactions between the phthalocyanines. Thus, our findings suggest that CDs could be used to support electronic couplings in multichromophoric systems and further increase their applicability in organic electronics, photonics, and artificial photosynthesis.  相似文献   
26.
The first example of the control of porphyrinoid chromophore symmetry based on the positional isomerism of peripheral substituents has been achieved by preparing tetraazaporphyrins (TAPs) with C4h, D2h, C2v, and Cs symmetry due to the relative arrangement of peripheral tert‐butylamino and cyano groups as push and pull substituents, respectively. The four structural isomers were successfully isolated and characterized by 1H NMR spectroscopy and X‐ray crystallography. The band morphology in the Q‐band region varies depending on the molecular symmetry due to the significant perturbation introduced into the chromophore by the push and pull substituents. The C4h and C2v isomers exhibit a single Q band, whereas the Q bands of the D2h and Cs isomers show a marked splitting. The magnetic circular dichroism spectra indicate that the push–pull TAPs retain the properties of the 16‐membered 18π‐electron perimeter generally observed for porphyrinoids. Theoretical calculations have demonstrated that the perturbation introduced by the substituents lowers the D4h symmetry of the parent TAP π‐conjugated system, and this results in significant spectral changes. A novel approach to the fine‐tuning of the spectral properties of porphyrinoids based on changes in the chromophore symmetry is described.  相似文献   
27.
The synthesis, reactivity, and photophysical properties of new rhodamines with intense red fluorescence, two polar residues (hydroxyls, primary phosphates, or sulfonic acid groups), and improved hydrolytic stability of the amino‐reactive sites (NHS esters or mixed N‐succinimidyl carbonates) are reported. All fluorophores contain an N‐alkyl‐1,2‐dihydro‐2,2,4‐trimethylquinoline fragment, and most of them bear a fully substituted tetrafluoro phenyl ring with a secondary carboxamide group. The absorption and emission maxima in water are in the range of 635–639 and 655–659 nm, respectively. A vastly simplified approach to red‐emitting rhodamines with two phosphate groups that are compatible with diverse functional linkers was developed. As an example, a phosphorylated dye with an azide residue was prepared and was used in a click reaction with a strained alkyne bearing an N‐hydroxysuccinimid (NHS) ester group. This method bypasses the undesired activation of phosphate groups, and gives an amphiphilic amino‐reactive dye, the solubility and distribution of which between aqueous and organic phases can be controlled by varying the pH. The presence of two hydroxyl groups and a phenyl ring with two carboxyl residues in the dyes with another substitution pattern is sufficient for providing the hydrophilic properties. Selective formation of a mono‐N‐hydroxysuccinimidyl ester from 5‐carboxy isomer of this rhodamine is reported. The fluorescence quantum yields varied from 58 to 92 % for free fluorophores, and amounted to 18–64 % for antibody conjugates in aqueous buffers. The brightness and photostability of these fluorophores facilitated two‐color stimulated emission depletion (STED) fluorescence nanoscopy of biological samples with high contrast and minimal background. Selecting a pair of fluorophores with absorption/emission bands at 579/609 and 635/655 nm enabled two‐color channels with low cross‐talk and negligible background at approximately 40 nm resolution.  相似文献   
28.
Structurally unique π‐expanded diketopyrrolopyrroles (EDPP) were designed and synthesized. Strategic placement of a fluorene scaffold at the periphery of a diketopyrrolopyrrole through tandem Friedel–Crafts‐dehydration reactions resulted in dyes with supreme solubility. The structure of the dyes was confirmed by X‐ray crystallography verifying a nearly flattened arrangement of the ten fused rings. Despite the extended ring system, the dye still preserved good solubility and was further functionalized by using Pd‐catalyzed coupling reactions, such as the Buchwald–Hartwig amination. Photophysical studies of these new functional dyes revealed that they possess enhanced properties when compared with expanded DPPs in terms of two‐photon absorption cross‐section. It is further demonstrated that in addition to the initial diacetals, the final electrophilic cyclization step can also be applied to diketones. By placing two amine groups at peripheral positions of the resulting dyes, values of two‐photon absorption cross‐section on the level of 2000 GM around 1000 nm were achieved, which in combination with high fluorescence quantum yield (Φfl), generated a two‐photon brightness of approximately 1600 GM. These characteristics in combination with strong red emission (665 nm) make these new π‐expanded diketopyrrolopyrroles of major promise as two‐photon dyes for bioimaging applications. Finally, the corresponding N‐alkylated DPPs displayed a solid‐state fluorescence.  相似文献   
29.
The reaction of POCl3‐activated, readily soluble diketopyrrolopyrrole (DPP) with 2‐aminoheteroaromatics to yield 1:1 and 1:2 hydrogen chelates is described. Complexation of these hydrogen chelates with boron reagents results in thermally and photochemically stable fluorescent dyes (PP–azacyanines). The 1:2 complexes in particular absorb at long wavelengths and are brightly fluorescing. The rich photophysics of the new compounds are presented. Both the pronounced vibrational fine structure of the S0→S1 transitions and the observed fluorescence phenomena allow detailed conclusions to be made on the correlation between molecular structure and optical properties.  相似文献   
30.
We report on the chemoselective coupling between colorless peptide fragments functionalized with a mutually reactive electron-rich Nα-(4-ethynylphenyl)-Nα-(methyl)-glycyl- and an electron-deficient [4-(2,2-dicyanovinyl)]benzoyl moiety. The resulting donor-substituted 1,1-dicyanobuta-1,3-dienes represent a new class of orange-red colored (λmax = 450-500 nm, with molar extinction coefficients (ε) above 5,000 mol−1 dm3 cm−1) peptide-based imaging chromophores.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号